

Have You Considered Reorganizing Your Indexes More Frequently?

By Craig S. Mullins

M u l l i n s D a t a b a s e R e s e a r c h
A d i v i s i o n o f M u l l i n s C o n s u l t i n g , I n c .

1 5 C o v e n t r y C o u r t

S u g a r L a n d , T X 7 7 4 7 9

t e l 2 8 1 - 4 9 4 - 6 1 5 3

www.craigsmullins.com

eorganization is a fact-of-life for DB2 database

administrators. But practical, appropriate

reorganization best practices are not necessarily

practiced by many organizations. This paper will address

the topic of reorganization in general, but more

specifically it will tackle the need to expand the

frequency of index reorganization. The general theme is

this: increasing the frequency of reorganizing indexes

can improve the performance of your DB2 databases and

applications.

For those of you who are not overly familiar with

reorganization, it is the process of organizing data in

DB2 table spaces and indexes to improve the efficiency

of access to those objects. Reorganization is required

periodically to ensure that the data is situated in an

optimal fashion for access. The reorganization process

re-clusters data, resets free space, removes pseudo-

deleted data, and generally works to locate the physical

data as efficiently as possible in the table space or index

in questions. Reorganizing database objects can even

delete and redefine the underlying VSAM data sets for

STOGROUP-defined table spaces and indexes.

Proper planning and scheduling of reorganizations can

be a complex subject to master. Many factors influence

whether or not reorganization is recommended. But we

will attempt to simplify the topic by examining the

statistics and decision points for implementing efficient

reorganization policies in your DB2 environment.

The first step toward implementing a best practices

approach to DB2 reorganization is to adopt a metrics and

thresholds-based approach to reorganization instead of

an object-based approach. Unfortunately, the object-

based approach is common in many DB2 shops. With

this approach, database administrators create a new

reorganization job for each table space that is created.

The job is then scheduled to run monthly (or maybe

quarterly) regardless of need. Table spaces and indexes

are reorganized at the same time, too. This approach is

better than nothing, but I can guarantee that it is not the

best use of your time and computing resources. You will

invariably be reorganizing either “too soon” or “too late”

with this approach. Reorganizing “too soon” means that

you are consuming precious CPU resources to run a

reorganization task that is not needed... and reorganizing

“too late” means that you are reorganizing long after it

would have been beneficial. This too wastes resources

because it causes all of your SQL requests to the

disorganized tables to be inefficient.

Furthermore, waiting to reorganize indexes only until the

table space is reorganized is not a wise course of action.

The table space and any indexes on tables in that table

space are separate DB2 database objects living in

separate data sets and having different levels of

disorganization. Simply sweeping them all together into

a single job with no knowledge of their current structure,

is ill-advised and definitely not a best practice.

Reorganizing indexes more frequently also can be

beneficial because indexes tend to be smaller than table

spaces and therefore, they can be reorganized more

quickly. Sometimes, reorganizing an index can provide a

sufficient performance boost at minimal cost, thereby

delivering significant return on your investment.

A best practice approach to reorganizing your DB2 table

spaces and indexes requires metrics. The metrics that are

gathered by DB2 in the form of database statistics that

are stored in the DB2 Catalog. You can use the

RUNSTATS utility to gather statistics or, better yet, you

can utilize Real Time Statistics.

RUNSTATS and Real Time Statistics

Before you can move to a metrics-based reorganization

approach, metrics are needed. These can be gathered

using RUNSTATS or simply queried from the Real

Time Statistics tables.

The RUNSTATS utility collects statistical information

for DB2 tables, table spaces, partitions, indexes, and

columns. It can place this information into DB2 Catalog

tables or simply produce a report of the statistical

information. The statistics in these tables are used for

two primary reasons: to provide organizational

information for DBAs and to be used as input to the

DB2 optimizer during the BIND process to determine

optimal access paths for SQL queries. The statistical

information can also be queried using SQL.

Real Time Statistics (RTS) can be used to improve

autonomic administration of your DB2 environment.

RTS provides functionality that maintains statistics

about DB2 databases “on the fly,” without having to run

a utility program.

Prior to the introduction of RTS, the only way to gather

statistics about DB2 database structures was by running

a RUNSTATS utility. RTS, on the other hand, runs in

the background and automatically updates statistics in

two DB2 Catalog tables as the data in DB2 databases is

modified. Where RUNSTATS is a hands-on

administrative process, RTS is hands-off.

DB2 always gathers real-time statistics in memory for

each table space, index space, and partition in your

environment. The Real Time Statistics data is stored in

two DB2 Catalog tables:

• SYSIBM.TABLESPACESTATS—

Contains statistics on table spaces and

table space partitions

• SYSIBM.INDEXSPACESTATS—

Contains statistics on index spaces and

index space partitions

R

DB2 externalizes real-time statistics to the tables at the

following times:

• When you issue -STOP DB2

MODE(QUIESCE), DB2 first

externalizes all RTS values. Of course,

if you stop using MODE(FORCE), no

RTS values are externalized; instead,

they are lost when DB2 comes down.

• As specified by the DSNZPARM

STATSINT value. The default is every

30 minutes. You can adjust this

parameter to collect RTS values more

frequently or less frequently, as desired.

• During REORG, REBUILD INDEX,

COPY, and LOAD REPLACE utility

operations, DB2 externalizes the

appropriate RTS values affected by

running that utility.

Reorganization Guidelines

You should develop rigorous in-house standards for

reorganizing your DB2 database objects because doing

so is one of the most significant aids in achieving

optimal DB2 performance. We have already suggested

two general guidelines for adoption:

1) Implement metrics-based reorganization

thresholds based on DB2 statistics.

2) Adopt reorganization thresholds for indexes as
well as table spaces instead of just relying on

reorganizing indexes as the same time as the

table space.

The frequency of reorganization is likely to differ for

every DB2 application. By driving your reorganization

schedule based on thresholds you can take into account

important criteria such as:

• The frequency of data modification

(insertions, updates, and deletions)

• Application transaction volume

• Amount of free space allocated when

the table space or index was created

The next step is to adopt reasonable thresholds for

running your reorganization jobs. We will establish

some guidelines for that in the next section. Keep in

mind though, that these are general recommendations

and will not apply for every DB2 implementation, or for

every application within your shop. There are no hard

and fast rules that always apply in terms of when to

reorganize table spaces or indexes; that said, a firm

understanding of the rules of thumb will help in

understanding data disorganization.

Furthermore, the following guidelines can be used as a

basis for establishing thresholds for reorganizing your

DB2 indexes. Based on actual observations you can

adjust the thresholds accordingly, if required, to your

local requirements.

Reorganizing Index Spaces

Now that we know about the methods of obtaining

statistics for reorganization, let’s delve into the

appropriate statistics to examine to make our

reorganization decisions. Although reorganizing DB2

table spaces is important, we will devote most of our

discussion here to index reorganization issues and

considerations.

We will take a look at both the RUNSTATS and RTS

statistics upon which you can establish thresholds for

kicking off a reorganization task. Although we examine

both, the strong recommendation is to move to the RTS

statistics because they require no additional manual steps

to collect and they should be more accurate and up-to-

date since they are automatically collected as DB2

operates.

First, let’s look at the RTS values that can be examined

for index reorganization. If there have been a lot of

INSERTs and DELETEs to an index since the last time

it was reorganized you should consider reorganizing the

index. As data is added to and removed from an index it

can cause disorganization that impacts the performance

of queries using the index. The RTS columns

REORGINSERTS and REORGDELETES (in

SYSIBM.INDEXSPACESTATS) can be examined to

ascertain the number of index entries inserted or deleted

since the index was reorganized. A good rule of thumb is

to consider reorganizing an index when 25% or more

entries have been inserted or deleted:

• REORGINSERTS / TOTALENTRIES >= 25%

• REORGDELETES / TOTALENTRIES >= 25%

Another index-related statistic to pay particular attention

to is REORGAPPENDINSERT. It contains the number

of inserts into an index since the last reorganization for

which the index key was higher than any existing key

value. If this column consistently grows, you have

identified an object where data is inserted using an

ascending key sequence. You might consider lowering

the free space for such objects, because the free space is

wasted space if inserts are always done in ascending key

sequence. You should also consider reorganizing the

index when 20% or more entries have been appended:

• REORGAPPENDINSERT / TOTALENTRIES

>= 20%

The number of index leaf page splits should also be

examined when considering index reorganization. The

RTS column that indicates this metric is

REORGLEAFAR. Think about reorganizing the index at

10% or more:

• REORGLEAFFAR / NACTIVE >= 10%

There are actually two RTS values that expose the

disorganization of physical leaf pages. The RTS column

REORGLEAFNEAR shows the number of index page

splits that occurred since the last index reorganization in

which the higher part of the split page was near the

location of the original page. Far is worse than near, and

that is why we examine REORGLEAFFAR instead of

REORGLEAFNEAR. But you could consider using near

pages as an index reorganization metric, too, if you wish.

Because the impact is less use a greater percentage as a

threshold, for example 40% or more.

What is the difference between a near indirect reference

and a far indirect reference? A near reference is within

the prefetch quantity, whereas a far reference is outside

of the prefetch quantity.

When DB2 deletes a row index entries are pseudo-

deleted. This means that the index entry is marked as

deleted (pseudo-deleted), but it is not physically deleted.

But it is not just a DELETE that can cause a pseudo-

deleted index entry, UPDATE can, too. This is so

because an index update is actually a DELETE followed

by an INSERT. So you should examine the number of

pseudo-deleted RIDs when determining whether to

reorganize your indexes. In a non-data sharing

environment, think about reorganizing indexes when

10% or more of the index is comprised of pseudo-

deleted entries:

• REORGPSEUDODELETES /

TOTALENTRIES >= 10% (non-Data Sharing)

In a Data Sharing environment you should be more

cautious because a pseudo-deleted entry can cause S-

lock/unlock when inserting to a unique index. So,

consider 5% as the threshold when data sharing:

• REORGPSEUDODELETES /

TOTALENTRIES >= 5% (Data Sharing)

If instead of RTS you rely upon RUNSTATS values for

your reorganization decisions, you can track the page

splits metrics and pseudo deleted entries. For page splits,

use:

• LEAFFAR / NLEAF >= 10%

LEAFFAR is a column in SYSIBM.SYSINDEXPART;

NLEAF is a column in SYSIBM.SYSINDEXES and

SYSIBM.SYSINDEXPART.

For pseudo-deleted entries use:

• PSEUDO_DEL_ENTRIES / CARDF > 10% (or

5% for Data Sharing)

Both PSEUDO_DEL_ENTRIES and CARDF are

columns in SYSIBM.SYSINDEXPART.

You will not have access to the number of rows inserted

and deleted if you rely on RUNSTATS, but you will

have access to another statistic, LEAFDIST (in

SYSIBM.SYSINDEXPART). LEAFDIST helps

determine the relative efficiency of each index.

LEAFDIST indicates the average number of pages

between successive index leaf pages. The more

intervening pages, the less efficient the index will be.

The definition of LEAFDIST is 100 times the average

number of pages between successive leaf pages of the

index.

The higher the value of LEAFDIST, the more you

should consider reorganizing the index. Of course, if you

already are using LEAFFAR (and possibly

LEAFNEAR) then analyzing LEAFDIST will be of

limited value as a threshold.

Finally, regardless of whether you are using RTS or

RUNSTATS to set your reorganization thresholds, you

should also monitor for index pending statuses.

Whenever an index is in advisory REORG-pending

status (AREO* or AREOR) or advisory-REBUILD

pending status (ARBDP) as the result of an ALTER

statement you should attempt to reorganize (or rebuild)

the index as soon as reasonably possible.

Identifying Unused Indexes

DB2 9 for z/OS added the LASTUSED column to the

SYSINDEXSPACESTATS RTS table. The LASTUSED

column contains a date indicating the last time this index

was used. Any time the index is used to satisfy a

SELECT, FETCH, searched UPDATE, searched

DELETE, or to enforce a referential constraint, the date

is updated.

This helps to solve the problem of determining whether

or not an index is being used. Standard operating advice

is to DROP or delete anything that is not going to be

used. Examine the LASTUSED column over time to

determine which indexes are truly not being used, and

DROP the unused indexes. If the index is not being used,

dropping it makes your reorganization planning easier.

After all, you never have to reorganize an index that

does not exist, right?

What About Clustering?

The cluster ratio of an index is an important statistic that

is analyzed by the DB2 Optimizer when determining

SQL access paths. Cluster ratio is stored in the

CLUSTERRATIO column of the

SYSIBM.SYSINDEXES table in the DB2 Catalog.

Of course, CLUSTERRATIO is of absolutely no help at

all when determining whether to reorganize an index.

Cluster ratio describes the data in the table space, even

though it is reported in

SYSINDEXES. It represents the

percentage of rows that are in

physical order by the index key.

When data is highly clustered

sequential access is improved

because I/O operations can be

reduced when retrieving the data

in order by the clustering key.

Clustering is desirable and you

should keep an eye on the

CLUSTERRATIO of your

indexes, especially clustering

indexes. But reorganizing and

index will never affect this

statistic. To re-cluster data you

must reorganize the table space

containing the table upon which

the index is defined.

What About New DB2 Versions

and Hardware Improvements?

New versions of DB2 can impact

your reorganization guidelines.

For DB2 10 for z/OS, IBM has

driven new improvements that

can boost the performance of

queries when using disorganized

indexes. And new hardware

features also can be used to offset

the cost of disorganized indexes,

at least to some degree.

Prior to DB2 10, synchronous I/O

was used to scan disorganized

indexes. But as of DB2 10,

indexes can be scanned

asynchronously uses list prefetch

with the prefetch requests eligible

for zIIP processing (see Sidebar).

List prefetch reads a set of data

pages determined by a list of

RIDs taken from an index. By

prefetching RIDs and accessing

page by page, I/O can be reduced.

With increased asynchronous

processing, I/O does not need to

wait for CPU processing. Some

tests have shown that scans of

disorganized indexes in DB2 10

can be up to 5 times faster than in

DB2 9.

New disk hardware, notably the

DS8000 R6.2, also delivers

improved handling of

disorganized DB2 indexes. The

new hardware can meaningfully

improve list prefetch I/O. By using

High Performance FICON for

System z channel time is significantly

reduced. Additionally, a new feature

known as turbo list prefetch (TLP)

enhances the caching capabilities of

the DS8000. Some tests have shown

that throughput for list prefetch I/O

may be more than tripled.

So perhaps an argument can be made

that reorganizing your indexes is not

as important once you move to DB2

10 for z/OS. And, indeed, there is

some validity to that suggestion.

However, not every shop will be

using the latest IBM DS8000 disk. If

you use another manufacturer’s disk

you will need to examine its

capabilities.

Furthermore, indirect references can

still cause performance problems,

even for DB2 10. When you read a

row with an indirect reference an

additional GETPAGE is required,

which requires synchronous I/O.

Using list prefetch does not help with

indirect references because the list of

RIDs from the index contains only

the original RID locations. List

prefetch has no knowledge that the

row has been relocated until the row

is accessed.

And do not forget about pseudo-

deleted index entries. Pseudo-deleted

data will remain in the index, taking

up space and slowing scans, until you

reorganize it.

Summary

Moving to a metrics-based

reorganization standard can help to

improve the overall health of your

DB2 databases, and thereby improve

the performance of your application

systems. Establishing thresholds and

reorganizing based on those

thresholds is the industry best

practice approach. And by focusing

more attention on the organization of

your DB2 indexes, you can improve

the ROI of your reorganization

processes.

Good luck reorganizing!

SIDEBAR

The IBM System z Integrated Information

Processor (zIIP)

The zIIP is a specialty processor that relieves general

purpose processors of workload. Its primary goal is

to accept redirected DB2 workload, although others

types of workload also can be run on a zIIP. In

general, distributed DB2 for z/OS workload and XML

processing can be redirected to zIIP processors.

To fully comprehend what can and cannot run on a

zIIP, we need to discuss TCBs and SRBs. For

mainframe z/OS programs, code can execute in one

of two modes: TCB mode, also known as task mode,

or SRB mode. Most programs execute under the

control of a task. Each thread is represented by a

TCB, or Task Control Block. A program can exploit

multiple processors if it is composed of multiple

tasks, as most programs are.

An SRB, or Service Request Block, is a control block

that represents a routine that performs a particular

function or service in a specified address space.

SRBs are lightweight and efficient, but are available

only to supervisor state software. An SRB is similar

to a TCB in that it identifies a unit of work to the

system. But an SRB cannot “own” storage areas.

SRB routines can obtain, reference, use, and free

storage areas, but the areas must be owned by a

TCB. SRB mode typically is used by operating system

facilities and vendor programs to perform certain

performance-critical functions.

In general, z/OS will dispatch DB2 work in TCB mode

if the request is local, or in SRB mode if the request

is distributed. These parallel tasks are assigned the

same importance as the originating address space.

Pre-emptible enclaves are used to do the work on

behalf of the originating TCB or SRB address space.

Enclaves are grouped by common characteristics

and service requests and since they are pre-

emptible, the z/OS dispatcher – and Workload

Manager – can interrupt these tasks for more

important ones. There are two types of pre-

emptible SRBs: client SRBs and enclave SRBs.

If the DB2 request is distributed DRDA workload,

then it will be executed in enclave SRBs. If the

request is coming over a local connection, then it

will be dispatched between TCBs, client SRBs, and in

some cases enclave SRBs (such as for parallel

queries and index maintenance).

So what does all of this have to do with specialty

processors? To run on a zIIP, the workload must run

under an enclave SRB. The benefit of zIIPs? IBM and

most ISVs do not charge for workload that runs on a

zIIP. So, prudent use of zIIPs can reduce the cost of

mainframe computing.

Published by:

Mullins Consulting, Inc.

15 Coventry Court

Sugar Land, TX 77479

Telephone: 281 494 6153

www.CraigSMullins.com

About Mullins Consulting, Inc.

Mullins Consulting, Inc. is a database research and consulting company specializing in database performance,

database administration, and database tools. The company was founded by Craig S. Mullins, a data management

strategist, researcher, and consultant. Craig has nearly three decades of experience in all facets of database systems

development including developing and teaching DB2 and SQL classes, systems analysis and design, database

administration and system administrator, and data analysis and modeling. He has worked with DB2 for z/OS since

Version 1 and has experience working with other database technology including Microsoft SQL Server, Sybase ASE

and IMS.

All rights reserved. No part of this report may be reproduced or stored in a retrieval system or transmitted in any

form or by any means, without prior written permission.

